Epitranscriptomics

Overview

RNAs can be modified post-transcriptionally with dynamic and reversible modifications such as N6-methyladenosine (m6A). RNA methylation dynamically regulates the processing, export, translation, and stability of RNA molecules, thereby affecting biological and pathological processes such as differentiation and cellular response to stress and tumorigenesis. Epitranscriptomics refers to the field that studies RNA modifications. The majority of RNA modifications involve the addition of a methyl group to certain positions on the RNA such as m6A, N1-methyladenosine (m1A), 5-methylcytosine (m5C) and 2'-O-methylation. Sometimes, acetylation also occurs on RNA molecules. Next-generation sequencing (NGS)-based methods, either relying on antibody enrichment or third-generation sequencing, have been developed to map post-transcriptional RNA modification and explore their functions, We provide a full range of epitranscriptomics services to investigate RNA modifications using NGS or long-read sequencing (Oxford nanopore sequencing and PacBio SMRT sequencing). We can help you detect many forms of RNA modifications including m7G, m3C, m1A, 5mC, 5hmC, m6A, m6Am, acetylation, and 2'-O-methylation.

Features

Service Portfolio

Explore how our epitranscriptomics services help researchers map RNA modifications and explore their pathways.

m7G MeRIP-Seq

N7-methylguanosine (m7G) is an essential modification at the 5' cap of eukaryotic mRNA. We provide m7G-MeRIP sequencing to map m7G and reveal its distribution features.

Learn More

m7G+m3C Sequencing

We provide a deep sequencing-based service for the simultaneous profiling of 7-methylguanosine (m7G) and 3-methylcytidine (m3C) in RNA at single nucleotide resolution.

Learn More

m1A-Seq

m1A has been found in total RNA, rRNA, and tRNA. We provide m1A-seq service to reveal the presence and functions of m1A in RNA.

Learn More

m5C Profiling

Cytosines can be methylated in the form of 5mC (m5C) and subsequently oxidized to generate 5hmC. We provide RNA BS-seq, m5C-RIP-seq, and hMeRIP-seq for profiling 5mC, or 5hmC, or both.

Learn More

m6A Profiling

We provide MeRIP-seq/m6A-seq for mapping N6-methyladenosine (m6A) / N6, 2'-O-dimethyladenosine (m6Am) at single-nucleotide resolution.

Learn More

acRIP-Seq

acRIP-Seq can be used to depict a transcriptome-wide map of N4-acetylcytidine (ac4C) and reveal its roles in RNA stability, alternative splicing, gene expression regulation, and protein synthesis.

Learn More

2'-O-Methylation Sequencing

2'-O-methylation is a common RNA modification, mostly found in rRNA, snRNA. 2'-O-methylation sequencing enables a transcriptome-wide mapping of this modification.

Learn More

Pseudo Sequencing

Pseudouridylation sequencing is a NGS-based method to comprehensively detect global maps of pseudouridylation, a post-transcriptional modification in various molecules.

Learn More

Application Fields

  • Cancer transcriptomics
  • Population genetics
  • Pharmacogenomics applications
  • Agricultural applications

Sequencing Platforms

  • Illumian HiSeq 2500 / HiSeq 4000 / HiSeq X Ten / NovaSeq 6000 / NextSeq 500 / MiSeq
  • PacBio RS II / Sequel
  • Nanopore PromethION
  • 10X Genomics

References:

  1. Peer E, Rechavi G, Dominissini D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Current opinion in chemical biology, 2017, 41: 93-98.
  2. Shafik A, Schumann U, Evers M, et al. The emerging epitranscriptomics of long noncoding RNAs. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2016, 1859(1): 59-70.
* For Research Use Only. Not for use in diagnostic procedures.


Inquiry
RNA
Research Areas
Copyright © CD Genomics. All rights reserved.
Top